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Karar Destek Modellemesi 

• Tahmine dayalı modeller, yüksek performanslı 
sistemlerde neredeyse her zaman karar vermenin 
temelini oluşturur. 



Matematiksel modelleme nedir? 
• Gerçek bir durumu kabul edilebilir bir doğruluk düzeyinde tanımlayan bir dizi 

matematiksel denklemin geliştirilmesi ve çözümü.Gerçek bir durumda ne olacağını 
tahmin etmek için kullanılırNot: Burada tamamen nitel/tanımlayıcı modellerden 
ziyade nicel modellerle ilgileniyoruz. 



Example – A simple population model (the “logistic map”) 

Let Ni be the population in year i 
A crude model for population growth is that 
Ni=aNi-1 

When a>1, the population increases (unboundedly) each year.  When a<1, the population 
decreases each year until it reaches zero (extinction). 
This is obviously an oversimplification.  We need to account for overcrowding and limited 
resources i.e. we expect the value of parameter a to vary with the population N. 
Now have 
 
Ni=a(Ni-1)Ni-1 

 
Lets assume that a(N)= (1-N) for N in the interval [0,1] 
 



Example – A simple population model (the “logistic map”) 

Ni= (1-Ni-1)Ni-1       “Logistic Map” 

Note that this is a very much simplified model.  Are these simplifications justified ? That is, how “good” is 
this model. 
-depends on what we want to use it for. 
-can compare predictions of model with observed behaviour to validate model/establish accuracy.  
Availability of observations places fundamental limit on quality of model. 
What can we use the model for ? 
 
The structure of the model reflects our understanding of the structure of the system 
-a model organises our experiences and observations 
We can solve the model equations to make predictions 
- decision support 
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Example – A simple population model (the “logistic map”) 

We can solve the model equations to make predictions … 

Ni-1 

Ni 

Ni= (1-Ni-1)Ni-1 with =2 

Ni=Ni-1 

Graphical Solution 



With =2, a stationary point exists to which all solutions in interval [0,1] are eventually attracted. 
 
NB: “stationary point” = “equilibrium point” = “steady-state solution” 
 
This is not always the case.  For example, consider when =3.75 

Example – A simple population model (the “logistic map”) 

Ni-1 

Ni 
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The population never 
settles down to a 
constant value 



Queue length, q.  Service rate, B packets/s. 
 
Packets arrive at times t0,t1,t2,… 
 
Ignoring servicing of packets just now, when a packet arrives we have 
 
q(tn)=min(q(tn-1)+1,  qmax)  
 

Now, interval between two packets is tn-tn-1.  During this interval B(tn-tn-1) packets are 
serviced i.e. removed from the queue.  The queue size cannot fall below zero.  So, we 
have as our model 
 
Q=min(q(tn-1)+1-B(tn-tn-1) , qmax) 
q(tn)=max(Q,0) 
 

Example:  Server with buffer/queue 



Now let’s model the behaviour of the source.  Suppose we have one source and that 
it sends a new packet in response to the server signalling that it has finished servicing 
a packet.  Also suppose that its time T for the packet to travel from the source to the 
queue. 

Example:  Server with buffer/queue and acknowledgement 

1. Send first packet at time t0. 

2. Packet arrives at queue at time to+T 
3. Service rate is B packets/s, so at time to+T+1/B server signals 

that packet has been serviced. 
4. Send second packet – time is now t1=t0+T+1/B 
5. Packet arrives at queue at time to+2T+1/B  

Queue now doesn’t overflow, but server is idle for time T between packets 
arriving.  Can we do better ? 



Example:  Vehicle transmission 

Engine torque, TH 

Shaft torque, TL 

Force, F 

TL=NTH, N is gearbox ratio 
Force exerted by wheel is TLR,  with  friction coeff, R radius of wheel 
Air creates drag force -v, with v the velocity of vehicle 
Newton’s Law: Force = mass*acceleration 
F=NTHR- v=m a 
Noting that a=dv/dt, we have the following model for the speed of the vehicle. 
m dv/dt= NTHR - v 
 
 



Example:  Vehicle transmission 

Suppose the vehicle has two gears, N1 and N2.  The gear used is selected by an automatic 
transmission.  The model is then 
 
   N1THR - v  in gear 1 
m dv/dt= 
   N2THR - v  in gear 2 
 
+ a model of the the decision making process used by the automatic transmission. 



Course Outline 
 
How do we derive a model for a system ? 
How do we extract information from it (esp. how do we obtain quantitative solutions and analyse 
their properties) ? 
 
- this course is structured around these questions. 
Introduce taxonomy of models.  It turns out that most systems can be modelled 
using a fairly small set of model structures.   

•  

Study solutions, esp. numerical solutions/simulations 
 

•  

Can derive models from first principles or learn model from observations (or more usually 
by a combination of both approaches).  We will not cover first principles modelling as very 
application specific.  But will introduce machine learning approaches (including 
probabilistic reasoning ideas). 

•  



A taxonomy of mathematical models 

•Difference Equations 
•Differential Equations 
•Hybrid 

 
•Linear 
•Nonlinear 

 
•Time-invariant 
•Time-varying 

 
Other aspects of models can also be usefully classified, but not pursued here. 
Especially deterministic/stochastic models – stochastic models not covered in this course. 

Can combine these two classifications e.g. 
linear differential equations 



A taxonomy of mathematical models 

•Difference Equations 
•Differential Equations 
•Hybrid 

 

Simple Example of a Difference Equation: 
 
y(k) = a y(k-1), k=1,2,… 
 
This is equivalent to the (infinite) set of equations: 
 
y(1)=ay(0) 
y(2)=ay(1) 
y(3)=ay(2) 
etc. 

If have observations of y(0), y(1), etc, then this defines a relation 
between these observations.  If y(1), y(2) etc are unknown, the 
equations can be solved to find them. 



Difference Equations 

Logistic Map is another example of a difference equation 
 
y(k)=(1-y(k-1))y(k-1),  k=1,2,… 
 
Can also include an external input u in the difference equation, e.g. 
 
y(k) = a y(k-1)+bu(k-1), k=1,2,… 
 
This is equivalent to the (infinite) set of equations: 
 
y(1)=ay(0)+bu(0) 
y(2)=ay(1)+bu(1) 
y(3)=ay(2)+bu(2) 
etc. 
 
 



Definition: 
Suppose there is a defined sequence of values y(k), k=0,1,2,… (e.g. representing values observed 
at equally-spaced time points).  A difference equation is an equation relating the value y(k) to 
other values y(i), ik. 
 
A difference equation is said to be causal when y(k) is related to values y(i) with i<k. 
 
i.e. y(k)=f(y(k-1),y(k-2),…,y(k-n), u(k-1),u(k-2),…,u(k-m)) 
 
 
where m,n are some constants. 
NB: We write y(k)=f(y(k-1),y(k-2),…) but could equally well write this as y(k+1)=f(y(k),y(k-1),…), and 
this is often done. 
 

Difference Equations 

u is an external input 



•Difference Equations 
•Differential Equations 
•Hybrid 

 
•Linear 
•Nonlinear 

 
•Time-invariant 
•Time-varying 

Linear Time-Invariant Difference Equations + 

Difference Equations 

A difference equation is said to be linear when the function f on the RHS is a linear function 
 
i.e y(k)=a1(k)y(k-1) + a2 (k) y(k-2)+…+an (k) y(k-n) 
  +b1 (k) u(k-1)+b2 (k) u(k-2)+…+bm (k) u(k-m)) 
 
where a1(k), a2(k), …,an (k) and b1 (k),b2 (k), …, bm (k) are time-varying parameters.  When these 
parameters are constants (do not vary with time), the model is said to be linear time-invariant. 



Difference Equations 

A solution to a difference equation is a function y(k) that satisfies the equation.  Solutions are 
readily derived by recursion. 
 
e.g. for  y(k)=ay(k-1) we have that 
       y(1)=ay(0) 
       y(2)=ay(1)=a2y(0) 
       y(3)=ay(2)=a3y(0) 
       etc. 
 
i.e. a solution is y(k)=aky(0) 
 
 
NB: We need to specify y(0) in order to solve this equation.  This is called the initial condition for 
the equation.  We need to specify both the equation and its initial condition in order to define a 
solution. 
 



More generally,  

 

y(k)=f(y(k-1),y(k-2),…,y(k-n), u(k-1),u(k-2),…,u(k-m)) 

 

We assume that the input values u(k) are defined beforehand. We must also specify y(0), y(1), 
…, y(n-1) in order to define a solution – in general the initial condition must specify n values. 

 

Difference Equations – Initial Conditions 



•Note that a difference equation need not have any solution. 

e.g. y(k)2=-(1+y(k-1)2) 

has no solution since y(k)2 can never be negative. 

 

•Also, even when a solution exists, it need not be unique i.e. there may exist many solutions. 

e.g. sin y(k) = y(k-1) 

 

Generally, however, a model of a physical system can be expected to possess a solution which is 
unique. 
 

Difference Equations – Existence & Uniqueness of Solutions 



Recall that linear time-invariant difference equations have the form 
y(k)=a1y(k-1) + a2y(k-2)+…+any(k-n) 
  +b1u(k-1)+b2u(k-2)+…+bmu(k-m)) 
Consider the simplest system   y(k)=ay(k-1)  “first-order system” 
We have that    y(1)=ay(0) 
            y(2)=ay(1)=a2y(0) 
  y(3)=ay(2)=a3y(0) 
  etc 
So the solution is y(k)=aky(0).  Note that the solution behaves as an exponential – we can rewrite 
it as y(k)=exp(k loga)y(0) 
•For a<1, y(k)0 as k  - system is said to be stable 
•For a>1, y(k) as k  - system is said to be unstable 
•For a=1, solution neither grows of decays  
  - system is said to be critically stable 
 

Difference Equations – Solutions to Linear Time-Invariant Models 
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Also, rate of convergence/divergence varies with the value of a 

Difference Equations – Solutions to Linear Time-Invariant Models 

k 

y(k) a=0.95 

a=0.75 

a=0.25 



Consider now y(k)=a1y(k-1) + a2y(k-2)  “second-order system” 
 
By analogy to the first-order case, try a solution of the form  y(k)=ky(0) where  is some (as yet 
unknown) constant.  Then we need, 
 
       k y(0)=a1 

k-1y(0)+a2 k-2y(0) 
i.e.  k - a1 

k-1 - a2 k-2 = 0 
 
Dividing through by k-2 gives 
       2 - a1  - a2  = 0 
i.e.  = a1/2 (a1

2+4a2)/2 
 
We can work this through to derive an explicit solution.  We won’t do this though.  Observe that 
the situation where a1

2+4a2 < 0 (and so  is complex valued) looks like its going to be different 
from when a1

2+4a2 < 0 (and so  is real valued). 

Difference Equations – Solutions to Linear Time-Invariant Models 
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Consider now y(k)=a1y(k-1) + a2y(k-2)  “second-order system” 
 

Difference Equations – Solutions to Linear Time-Invariant Models 

k 

a1=1,a2=-0.5 
(a1

2+4a2=-1) 

a1=1,a2=-0.2 
(a1

2+4a2=+0.2) 
y(k) 

a1
2+4a2 < 0 

“underdamped” 
 
a1

2+4a2 > 0 
“overdamped” 
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Difference Equations – Solutions to Linear Time-Invariant Models 

a1=1,a2=-0.95 
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a1=1,a2=-0.75 
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NOTE:  
= a1/2 (a1

2+4a2)/2 
Similarly to first-order case,  
•For ||<1, y(k)0 as k  - system is stable 
•For ||>1, y(k) as k  - system is unstable 
•For ||=1, solution neither grows of decays  

– system is critically stable 
When  is real valued, system is overdamped (with special case called critically damped when 
a1

2+4a2=0) 
-solution to system is the sum of pure exponentials 
When  is complex valued, system is underdamped 
-solution to system is oscillatory, with envelope that decays exponentially for stable systems, 
grows exponentially for unstable systems. 

Difference Equations – Solutions to Linear Time-Invariant Models 



Difference Equations – Equilibria of Linear Time-Invariant Models  

For stable systems, the solution converges to a final value as k.  This is called the 
equilibrium point of the system (also called stationary point or steady-state value). 
 
Linear time-invariant difference equation: 
y(k)=a1y(k-1) + a2y(k-2)+…+any(k-n) 
  +b1u(k-1)+b2u(k-2)+…+bmu(k-m)) 
 
When the input u is zero, at an equilibrium point y we must have:   y=a1 y+a2 y+…+an y   

i.e. y=0  
 

When input is non-zero, the equilibrium point will depend on the input.  E.g. say u(k)=u, a 
constant value.  Then  
     y=a1 y+a2 y+…+an y+b1u+b2u+…+bmu 
 
i.e. y= u (b1+b2+…+bm)/(a1+a2+…+an) 



Difference Equations – Solutions to Nonlinear Models 

For linear difference equations, in qualitative terms only a small number of types of solution 
can exist (stable, unstable, overdamped, underdamped etc). 
 
For nonlinear difference equations, the situation is much richer. 
 
e.g. depending on the value of the parameter , the Logistic Map y(k)= (1-y(k-1))y(k-1) not 
only has solutions which are stable and unstable but also has steady oscillatory solutions and 
chaotic solutions (complex oscillations) - these are both types of equilibrium solution which do 
not have just a single value y. 
 
 



Difference Equations – y(k)= (1-y(k-1))y(k-1)  
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=3.5  
“steady oscillation/limit cycle” 
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=3.9 
“complex oscillation” 
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Differential Equations 

A simple example is 
 
dy(t)/dt = ay(t) 
 
Verify that the solution to this differential equation is: 
 
y(t)=exp(at) y(0) 
 
-compare with the first-order difference equation y(k)=ay(k-1) 
which has solution y(k)=aky(0)=exp(k log(a)) y(0). 
 



Another example: 
 
 
Can also include an external input u in the differential equation, e.g. 
dy(t)/dt = a y(t)+bu(t) 
 
Definition: 
Suppose there is a function y(t) defined on an interval [to,t1].  A differential equation is an 
equation relating the value y(t) to some of its derivatives. 
In general, a differential equation is of the form: 
 
 
 
 

Differential Equations 

d y

dt
y

dy

dt
t

2

2
 sin cos



Differential Equations 

•Difference Equations 
•Differential Equations 
•Hybrid 
•Linear 
•Nonlinear 
•Time-invariant 
•Time-varying 

Linear Time-Invariant Differential Equations + 

A differential equation is said to be linear when the function f on the RHS is a linear function 
 
i.e 
 
 
 
where a1(t), a2(t), …,an (t) and b1 (t),b2 (t), …, bm (t) are time-varying parameters.  When these 
parameters are constants (do not vary with time), the model is said to be linear time-invariant. 
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A solution to a differential equation is a function y(t) that satisfies the equation.  
 
E.g. the solution to dy(t)/dt = ay(t) is y(t)=exp(at) y(0) 
 
Similarly to difference equations, we need to specify the initial condition y(0) in order to solve this 
equation i.e. we need to specify both the equation and its initial condition in order to define a 
solution. 
 
E.g. the differential equation:  
 
has general solution of the form y(t)=A+Bt where A,B are some constants.  To find the values of 
these constants we use 
 
                         y(0)=A,  dy(0)/dt=B 

Differential Equations 

d y

dt

2

2
0



Also, similarly to the difference equation y(k)=ay(k-1), the solution to dy(t)/dt = ay(t) is y(t)=exp(at) 
y(0) 
 
i.e. 
•For a<0, y(t)0 as t  - system is said to be stable 
•For a>0, y(t) as t  - system is said to be unstable 
•For a=0, y(t)=y(0) - system is said to be critically stable 
 
Similarly to the second-order linear difference equation, the second-order linear differential 
equation 
 
 
 
exhibits overdamped, underdamped and critically damped responses depending on the values of a1 
and a2. 

Differential Equations 

d y

dt
a y a

dy

dt

2

2 1 2 
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a1=0,a2=-1 
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Second-order Linear Differential Equation 

a1=-0.05,a2=-1 

a1=-0.7,a2=-0.75 a1=-0.29,a2=-0.93 

time, t time, t 

y(t) 

y(t) 

y(t) 

y(t) 

d y

dt
a y a

dy

dt

2

2 1 2 
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Compare with 2nd order difference eqn y(k)=a1y(k-1) + a2y(k-2)  

a1=1,a2=-0.95 
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Linear difference and differential equations are closely related. 
NOTE: This is generally only true for linear equations.  Nonlinear equations seem to be 
fundamentally different, 
e.g. chaos can exist in first-order difference equations (such as the logistic map), but not in first-
order differential equations (we need to go to at least third order to find a differential equation 
which exhibits chaos). 
 
Recall definition of derivative: 
 
 
 
This suggests that a derivative might be approximated by the finite difference: 
 
 
 
for small h.  This is called the Euler approximation.  We expect that as h is made smaller, the 
accuracy of the approximation improves. 
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Consider the first-order linear differential equation: 
 
 
and now replace the exact derivative by its Euler approximation.  We have 
 
 
i.e.           y(t+h)=y(t)+ha1(t)y(t) 
 
Considering the time instants kh, k=0,1,2,… we have 
 
               y((k+1)h)=y(kh)+ha1(kh)y(kh) 
 
which we can write as 
 
               y(k+1)=y(k)+ha1(k)y(k)    
We have converted our first-order differential equation into a first-order difference equation.  This 
conversion is only approximate, but the approximation becomes arbitrarily accurate as h is made 
small. 
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Impulse Response
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More generally, a linear differential equation: 
 
 
 
 
 
 
can be approximated by a linear difference equation of the same order. 
 
Example 
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The Concepts of a System 
System: is any collection of interacting elements that operate to achieve some 
goal. 

Production 
Control Dept. 

Fabrication 
Dept. 

Purchasing 
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Shipping 
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Customer 
Orders 

Raw 
Materials 

A Factory System 

System Boundary 


